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Regular and anomalous scaling of a randomly advected passive scalar
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Extending Kolmogorov's refined similarity hypothesis to study the inertial behayfdr(x+r,t)
—T(x,t)]1*"yecréan of a passive scaldF(x,t) advected by a rapidly changing incompressible velocity field, a
random variable? was introduced by ChingPhys. Rev. Lett79, 3644(1997)]. In this paper, the statistical
distribution of the random variablX= 0/\/(7927 is investigated analytically for the scaling in two limits,
n-independent scaling,,= ¢, and regular scaling,,=n{¢,, and numerically for the scaling of the Kraichnan
conjecturel,,= %[\/4nd§2+(d— £,)?—(d—¢,)]. For n-independent scaling,,= ¢,, the statistical distribu-
tion of X tends to an exponential distribution whép—0 or d— and to a Gaussian distribution whén
—2 andd=2. For regular scalind,,=n{,, the statistical distribution oK tends to a Gaussian distribution
when{,—0 ord—c. In d=2, there seems to be a phase transition for the probability density furle¢(dn
from a convex to a concave function when the valug-ofs increased and the critical pointds=4/3 where
the random variabl& has a uniform distribution ifi—/3,1/3]. In d=3, P(X) is a convex function for all
0<{,<2 and tends to a constant on its supforty/3,y3] when {,—2. For the scaling of the Kraichnan
conjectureP(X) has two peaks inl=2 for {,>1.33, but, ind=3, it has only one peak for all€{,<2 and
changes very slowly with the value &fin the neighborhood cK=0 as{,—2.
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The problem of passive scalar advection is of physicaproperties of § for the scaling in the two limits of
importance in itself and may also serve as starting point im-independent scaling,,= {, and regular scaling,,=n¢,,
studying multiscaling in turbulence. Although the governingand also for the scaling of Kraichnan conjecture.
equation for a passive scalar is apparently linear when a ran- Consider the structure functio®s,(r)=([T,(x)]?") of a
dom velocity field is prescribed, the statistical properties ofpassive scalar field(x,t) that obeys
the passive scalar are much more elusive. Nevertheless, a
mathematically tractable model in which the velocity field is
rapidly changing in time was introduced by Kraichndn.
Some results of this model can be obtained exactly. Based
upon a linear ansaf2], Kraichnan gave a conjecture for the |n the limit of an infinitely rapid change in time o{x,t), the
scaling exponents,,, of the scalar structure functioiss,(r) equation forS,,(r) is given by[1,2,9]
defined by S,,(r)~rén, where S, (r)=([T(x+r,t)

—T(x,1)12M=([T,(x)]*"). The simplified model has at- 2 4 9S,n(r)
tracted much attention as a possible model to study intermit- T aigr rd=1o(r) ;r
tency and multiscaling in turbulend®2-9]. Kolmogorov's r
refined similarity hypothesié€RSH) [10,11] was extended to , , ) ) )
study the intermittency of this model by Chifitg]. With the ~ Where d is the space dimensionality ang(r) is the
RSH formulated in terms of a random variable the two-particle (zeidgd)y-dlffuswlty scalar YVIth the formy(r)
molecular-diffusion terms were evaluated. The scaling expo= 7(L)(r/L)**"*#,L denoting the integral scale. The
nents¢,, of the scalar structure functior®,(r) are deter- Mmolecular-diffusion terms,(r) in Eq. (2) are

mined solely by the statistics of the random varialsle

aT
E+(V~V)T=KV2T. (1)

=Jan(I), @

Therefore, the relation between the scaling exponénts Ion(r)=20(TEH(VE+VE)T). 3)
and the statistical distribution df is of great interest. . .

The Hdder reliability inequalities require thad{,,/dn The existence of a power law f@(r) requires(2,9]
be a nonincreasing function af. This implies that{,,
=n¢,. The limit ,,=n{, is called regular scaling. Away Jon(1)=nC, JZSZ“(r) (4)
from this limit, the scaling is called anomalous scaling. On " e Sy (r)

the other hand, all the theoretical analysis and numerical

simulations suggest thg&n isa nondecreasing function of where C2n are dimensionless constants that must be deter-
[2,3,8,9. This requires/,,=¢». The physical picture for the mined. Equatior(4) is also a consequence of the fusion rule
limit ¢,,=¢, was given in[2]. The Kraichnan conjecture Proposed by L'vov and Procacc[d3-15. From Egs.(2)
based upon the linear ansatz suggests that the scaling d(4), the scaling exponent, can be evaluatef?]:
anomalous midway between the two limifg,= ¢, and {5, 1

=n{,. The scaling exponert, is taken to be in the region _= 24

0<{,<2 [2]. In this paper, we investigate the statistical §2n—2[\/4nC2nd§2+(d )7 (A=) ©
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Based upon the linear ansg@2+VZ,)T,|T,)=T,, the clo- For n-independent scaling,= ¢, from g(n)=d/[nd
sure C,,=1 was proposed by Kraichng2]. The scaling +(1—n){z], we have
exponents {,, of the Kraichnan conjecture ard,,

= 1[JandZ,+(d— 5)2— (d— £5)). j xznpmdx:f (2n—1)
Numerical simulations and experimental df8z9,15 in-

dicate that the linear ansatz may be approximately correct, ¢ ¢
but a small departure from the linear anséspecially for x| [ 1= 22| n+ 22[x2-2p(X)dX.
small values ofT,) can create large changes in the anoma- d d
lous exponents. Therefore, there have been many studies of )
the scaling of a passive scalar using alternative methods
[4—8]. Ching formulated the RSH as Using the method of Sinai and YakHhdt7], from Eq.(8) we
can obtain
) ) L2 [r)\¢
=0 L) X © 1( L\ P AP ]
f 5115 e d dx XP[X?""1=0. (9

where y, is the locally averaged scalar dissipation rate de-
fined by x,=(1N,)[g x|VT(y)|’dy with B, being a
d-dimensional ball centered atwith radiusr and volumeV,
and ¢ a dimensionless random variable independentarid d?P 2vdP

statistically independent of(r). Using the formulation(6), —— — -——-¢c?P=0, (10
Ching [12] evaluated the molecular-diffusion ternds,(r)
and showed that the scaling exponefis satisfy

SinceP(X) is an even function oK, we have

where v={¢,/(d—¢,) and c=y2d/(d—¢{,). ReplacingX

1 and P(X) by z=cX and P=(c"'2)""Y?F(z), we can turn
{2,1:5{\/[d—§2—g(n)§2]2+4ng(n)§2(d—4“2) Eq. (10) into the Bessel modified equatioml®F/dz?
+(12)dF/dz—[1+ (v+1/2)%/z?]JF=0.  Noting that

—[d=—g(n) &1} (7 lim..P(X)=0, we haveP(X)=A|X|""YK, 1(c|X])

whereK , ., 1,,(c|X]|) is a modified Bessel function of the sec-
where g(n)=(2n—1)}(X?""2)/(X?", in which X  ond kind of orderv+1/2 andA is a constant. Determining
=0/ \(6?). From Eq.(7), we can find all the integer mo- the constanf from the conditionf *5P(X) =1, the solution
ments of the random variabl if the scaling exponents,,  for Eq. (10) is
are already known.

The statistical distribution ofX can be determined g3
uniquely from its integer-moment") if the power series P(X)= K.+ 3(c[X])
e [(XPMA"/(2n)!] converges in some intervék| <\, 2V (p+ 1)1“(5)
where\,>0 is the radius of convergendé6]. This suffi-
cient condition is equivalent to lign,..(X?")/[2n(2n c2v+2 = cogt)
—1)(X?""2)]=lim,_..1[2ng(n)]<1/My<o%. From Eq. = |x|2”+1f -
(7), {on=(, leads tog(n)=d/[nd+(1—n){,]. Thus, for m 0 (t?+c?X?)rt
the scaling of a passive scalar, the sufficient condition is
satisfied naturally, so that the statistical distributiorXafan _ Efx cogc|X[t) (11)
be determined uniquely from its moments. mlo (1+t2)r

In the following, we give analytical solutions for the prob-
ability density function(PDF) P(X) for the scaling at the From the analytical solutiofi 1), we can obtain the follow-
two limits of n-independent scaling,,= ¢, and regular scal- ing results.
ing {>n=n¢,, and numerical calculations for the scaling of (1) For {,—0 or d—~, we haver—0. Thus, the statis-
the Kraichnan conjecture. tical distribution ofX tends to the exponential distribution

FIG. 1. Plot of the probability density func-
tion P(X) as a function ofX=6/.\(6?) for
n-independent scaling,,=¢,. (a) d=2 for dif-
ferent{,= 0.0 (the exponential distribution0.5,
1.0, 1.5, 2.Qthe Gaussian distributigrifrom top
to bottom, and (b) d=3 for different /,=0.0
(the exponential distribution 0.5, 1.0, 1.5, 2.0,
and the Gaussion distributiddashed ling (from
top to bottom.
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FIG. 2. Plot of the probability density func-
tion P(X) as a function ofX= 0/ 6?) for regu-
lar scaling{,,=n¢, in d=2 for (a) {,=0.0 (the
Gaussian distribution 0.5, 1.0, 4/3(the uniform
distribution in[ — /3,v/3]) (from top to bottom
and(b) ¢{,=1.5,1.8,2.0(from bottom to top.

It is surprising that similar distribution t614) has been
found in the investigation of the RSH of a turbulent velocity

02 gost
0.1 0.4
0 0.2
-4 -2 o} 2 4 -2 -1 0 1 2
x X
1 >
lim P(X)=-—=e *?X,
gzao,dﬁmc \/E

(2) In d=2, the functiongy(n) tend to 1 when/,—2. In
this case, the statistical distribution & will tend to the
Gaussian distribution

1 2
lim P(X,d=2)= ——e X2,
(2 V2

Figures 1a) and Xb) show the probability density func-
tion P(X) in d=2 andd=3 for different{,.

For regular scaling,,=n¢,, the relationg(n)=n¢,/d
+(1—-¢,/d) gives

9 {> n
f i 1—3”x2 P(X)dX
=f (2n—1)X2""2P(X)dX. (12
This implies
(s dP (3¢,
(1—%x2)&:(%—1>xp. (13

Since P(X) is a non-negative function with the condition
[T2P(X)=1, P(X) is concentrated in a finite interval

[—V2d/¢5,V2d/{5]:

2)(2

2d

dig,—302
) : (14)

P(X)=B(1—

whereB=[2d/,I'(1/2)l'(d/{,— 1/12)/T'(d/{,)] L. So we
have the following results.

(1) For {,—0 ord—«, g(n)—1. The statistical distri-
bution of X tends to a Gaussian distribution.

(2) In d=2, when{,=4/3, the random variabl¥ has a
uniform distribution in[ —/3,y/3]. It is interesting that the
probability density functiorP(X) is a convex function for
{,<4/3 and a concave function fdf,>4/3 [see Figs. &)

and 2Zb)]. This appears to be a phase transition and the criti-

cal point is{,=4/3. Ind=3, the situation is different. The
probability density functiorP(X) is a convex function for all
0<¢,<2 and tends to a constant on its supgorty/3,y/3]
when {,—2 [see Fig. 3.

field [11] and for the statistical quasistationary PDF of the
passive scalarX=(T—(T))/{(T—(T))?*? in turbulence
[18].

For the scaling of the Kraichnan conjecturég,,
=1[4nd{,+(d—,)?—(d—¢,)], we can calculate the
moments (X?") for all positive integersn from g(n)
=1.0/(1.0- {,/d+ {,,/nd). The characteristic functiof(t)
of the probability density functio®(X) is

(—1)"(x2m

o b

f(t)y=1+ 21

n=

Noting thatf(t) is an even function of, we have

1 (+= ) 1 [+
P(X)= ELO f(t)e *dt= ;JO f(t)cogxt)dt.

Using the technique for numerical integration of an oscillat-
ing function [19], we obtain the numerical results for the
probability density functionP(X) in d=2 andd=3 [see
Figs. 4a) and 4b)]. Based upon the numerical calculations,
we have the following results.

(1) For {,—0 or d—o, the statistical distribution oK
tends to the Gaussian distribution.

0.4

P(X)

-4 -2 0 2 4

X

FIG. 3. Plot of the probability density functida(X) as a func-
tion of X= 6/ \/(#?) for regular scaling,,=n¢, in d=3 for differ-
ent¢,=0.0,0.5,1.0,1.5,1.8,2.(Grom top to bottom where{,=0.0

and 2.0 correspond to the Gaussian distribution and the uniform
distribution in[ — v/3,+/3], respectively.
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FIG. 4. Plot of the probability density func-
2 tion P(X) as a function ofX=6/\/(#?) for the
- Kraichnan conjecture for different,=0.0 (the
Gaussian distribution 1.0, 4/3, 1.8, 2.@from top
01 to botton) in (a) d=2 and(b) d=3.
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n-independent scaling,,=¢,, e.9.,P(X) seems to be con-

(2) It is interesting that the probability density function centrated in an infinite interval{o,).

P(X) has a saddle shape with two peaksdin2 when¢,

>1.33.Ind=3,ith I k a&=0 for all 0<
" , It has only one psa ora £2 | am grateful to Professor Emily S. C. Ching for her

<2. and changes_very slowly with the value Xfin the stimulating discussions. | also acknowledge financial support

neighborhood oX=0 when{,—2. from the Chinese University of Hong Kong, the National
Therefore, we suggest that the statistical distributioixX of Natural Science Foundation of Chif@rant No. 10002019

for the scaling of the Kraichnan conjecture has some similafhe USTC Fund for Young ScholafSrant No. KB1323,

properties to the regular scaling,=n¢, in the neighbor-  and the Research Foundation of State Key Laboratory of Fire

hood of X=0 and also some similar properties to Science of USTC.

[1] R. H. Kraichnan, Phys. Fluid$l, 945(1968. [11] G. Stolovizky and K. R. Sreenivasan, Rev. Mod. P1§6.229
[2] R. H. Kraichnan, Phys. Rev. Leff2, 1016(1994. (1994.
[3] R. H. Kraichnan, V. Yakhot, and S. Chen, Phys. Rev. L&t.  [12] Emily S. C. Ching, Phys. Rev. Letf9, 3644(1997.
240(1995. [13] V. S. L'vov and I. Procaccia, Phys. Rev. L, 3541(1996.
[4] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedeyv, [14] V. S. L'vov and |. Procaccia, Phys. Rev.5, 6268(1996.
Phys. Rev. E52, 4294(1995. [15] Emily S. C. Ching, V. S. L'vov, and I. Procaccia, Phys. Rev. E
[5] K. Gawedzki and A. Kupiainen, Phys. Rev. Le®5, 3834 54, R4520(1996.
(1995. ] [16] W. Feller, An Introduction to Probability Theory and Its Ap-
[6] M. Chertkov and G. Falkovich, Phys. Rev. Leit6, 2706 plications 2nd ed.(Wiley, New York, 1971.
(1999. , _ [17] Y. G. Sinai and V. Yakhot, Phys. Rev. Le@3, 1962(1989.
[7] A. L. Fairhall, O. Gat, V. S. L'vov, and |. Procaccia, Phys. [18] L. Valifio, C. Dopazo, and J. Ros, Phys. Rev. L@@, 3518
Rev. E53, 3518(1996. (1994,

[8] Emily S. C. Ching, V. S. L'vov, E. Podivilov, and I. Procaccia,
Phys. Rev. B54, 6364 (1996.

[9] S. Chen and R. H. Kraichnan, Phys. Fluitly 2867(1998.

[10] A. N. Kolmogrov, J. Fluid Mech13, 82 (1962.

[19] V. I. Krylov and N. S. SkoblyaHandbook of Numerical In-
vestigation of Laplace Transforfisrael Program for Scientific
Translations, Jerusalem, 1969

047302-4



