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Regular and anomalous scaling of a randomly advected passive scalar
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Extending Kolmogorov’s refined similarity hypothesis to study the inertial behavior^@T(x1r ,t)
2T(x,t)#2n&}r z2n of a passive scalarT(x,t) advected by a rapidly changing incompressible velocity field, a
random variableu was introduced by Ching@Phys. Rev. Lett.79, 3644 ~1997!#. In this paper, the statistical
distribution of the random variableX5u/A^u2& is investigated analytically for the scaling in two limits,
n-independent scalingz2n5z2 and regular scalingz2n5nz2, and numerically for the scaling of the Kraichnan
conjecturez2n5

1
2 @A4ndz21(d2z2)22(d2z2)#. For n-independent scalingz2n5z2, the statistical distribu-

tion of X tends to an exponential distribution whenz2→0 or d→` and to a Gaussian distribution whenz2

→2 andd52. For regular scalingz2n5nz2, the statistical distribution ofX tends to a Gaussian distribution
whenz2→0 or d→`. In d52, there seems to be a phase transition for the probability density functionP(X)
from a convex to a concave function when the value ofz2 is increased and the critical point isz254/3 where
the random variableX has a uniform distribution in@2A3,A3#. In d53, P(X) is a convex function for all
0,z2,2 and tends to a constant on its support@2A3,A3# when z2→2. For the scaling of the Kraichnan
conjecture,P(X) has two peaks ind52 for z2.1.33, but, ind53, it has only one peak for all 0,z2,2 and
changes very slowly with the value ofX in the neighborhood ofX50 asz2→2.
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The problem of passive scalar advection is of physi
importance in itself and may also serve as starting poin
studying multiscaling in turbulence. Although the governi
equation for a passive scalar is apparently linear when a
dom velocity field is prescribed, the statistical properties
the passive scalar are much more elusive. Nevertheles
mathematically tractable model in which the velocity field
rapidly changing in time was introduced by Kraichnan@1#.
Some results of this model can be obtained exactly. Ba
upon a linear ansatz@2#, Kraichnan gave a conjecture for th
scaling exponentsz2n of the scalar structure functionsS2n(r )
defined by S2n(r );r z2n, where S2n(r )[^@T(x1r ,t)
2T(x,t)#2n&[^@Tr(x)#2n&. The simplified model has at
tracted much attention as a possible model to study inter
tency and multiscaling in turbulence@2–9#. Kolmogorov’s
refined similarity hypothesis~RSH! @10,11# was extended to
study the intermittency of this model by Ching@12#. With the
RSH formulated in terms of a random variableu, the
molecular-diffusion terms were evaluated. The scaling ex
nentsz2n of the scalar structure functionsS2n(r ) are deter-
mined solely by the statistics of the random variableu.
Therefore, the relation between the scaling exponentsz2n
and the statistical distribution ofu is of great interest.

The Hölder reliability inequalities require thatdz2n /dn
be a nonincreasing function ofn. This implies thatz2n
<nz2. The limit z2n5nz2 is called regular scaling. Away
from this limit, the scaling is called anomalous scaling. O
the other hand, all the theoretical analysis and numer
simulations suggest thatz2n is a nondecreasing function ofn
@2,3,8,9#. This requiresz2n>z2. The physical picture for the
limit z2n5z2 was given in@2#. The Kraichnan conjecture
based upon the linear ansatz suggests that the scalin
anomalous midway between the two limitsz2n5z2 andz2n
5nz2. The scaling exponentz2 is taken to be in the region
0,z2,2 @2#. In this paper, we investigate the statistic
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properties of u for the scaling in the two limits of
n-independent scalingz2n5z2 and regular scalingz2n5nz2,
and also for the scaling of Kraichnan conjecture.

Consider the structure functionsS2n(r )5^@Tr(x)#2n& of a
passive scalar fieldT(x,t) that obeys

]T

]t
1~v•“ !T5k¹2T. ~1!

In the limit of an infinitely rapid change in time ofv(x,t), the
equation forS2n(r ) is given by@1,2,9#

2
2

r d21

]

]r S r d21h~r !
]S2n~r !

]r D5J2n~r !, ~2!

where d is the space dimensionality andh(r ) is the
two-particle eddy-diffusivity scalar with the formh(r )
5h(L)(r /L)(22z2),L denoting the integral scale. Th
molecular-diffusion termsJ2n(r ) in Eq. ~2! are

J2n~r !52nk^Tr
2n21~¹x

21¹x8
2

!Tr&. ~3!

The existence of a power law forS2n(r ) requires@2,9#

J2n~r !5nC2nJ2

S2n~r !

S2~r !
, ~4!

whereC2n are dimensionless constants that must be de
mined. Equation~4! is also a consequence of the fusion ru
proposed by L’vov and Procaccia@13–15#. From Eqs.~2!
and ~4!, the scaling exponentsz2n can be evaluated@2#:

z2n5
1

2
@A4nC2ndz21~d2z2!22~d2z2!#. ~5!
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Based upon the linear ansatz^(¹x
21¹x8

2 )Tr uTr&}Tr , the clo-
sure C2n51 was proposed by Kraichnan@2#. The scaling
exponents z2n of the Kraichnan conjecture arez2n

5 1
2 @A4ndz21(d2z2)22(d2z2)#.
Numerical simulations and experimental data@3,9,15# in-

dicate that the linear ansatz may be approximately corr
but a small departure from the linear ansatz~especially for
small values ofTr) can create large changes in the anom
lous exponents. Therefore, there have been many studie
the scaling of a passive scalar using alternative meth
@4–8#. Ching formulated the RSH as

Tr
25u2

L2

h~L ! S r

L D z2

x r , ~6!

wherex r is the locally averaged scalar dissipation rate
fined by x r5(1/Vr)*Br

ku¹T(y…u2dy with Br being a

d-dimensional ball centered atx with radiusr and volumeVr
andu a dimensionless random variable independent ofr and
statistically independent ofx(r ). Using the formulation~6!,
Ching @12# evaluated the molecular-diffusion termsJ2n(r )
and showed that the scaling exponentsz2n satisfy

z2n5
1

2
$A@d2z22g~n!z2#214ng~n!z2~d2z2!

2@d2z22g~n!z2#%, ~7!

where g(n)5(2n21)^X2n22&/^X2n&, in which X
5u/A^u2&. From Eq. ~7!, we can find all the integer mo
ments of the random variableX if the scaling exponentsz2n
are already known.

The statistical distribution ofX can be determined
uniquely from its integer-momentŝXn& if the power series
(n51

` @^X2n&ln/(2n)! # converges in some intervalulu,l0,
wherel0.0 is the radius of convergence@16#. This suffi-
cient condition is equivalent to limn→`^X2n&/@2n(2n
21)^X2n22&#5 limn→`1/@2ng(n)#,1/l0,`. From Eq.
~7!, z2n>z2 leads tog(n)>d/@nd1(12n)z2#. Thus, for
the scaling of a passive scalar, the sufficient condition
satisfied naturally, so that the statistical distribution ofX can
be determined uniquely from its moments.

In the following, we give analytical solutions for the prob
ability density function~PDF! P(X) for the scaling at the
two limits of n-independent scalingz2n5z2 and regular scal-
ing z2n5nz2, and numerical calculations for the scaling
the Kraichnan conjecture.
04730
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For n-independent scalingz2n5z2, from g(n)5d/@nd
1(12n)z2#, we have

E X2nP~X!dX5E ~2n21!

3F S 12
z2

d Dn1
z2

d GX2n22P~X!dX.

~8!

Using the method of Sinai and Yakhot@17#, from Eq.~8! we
can obtain

E F1

2 S 12
z2

d DX
d2P

dX2
2

z2

d

dP

dX
2XPGX2n2150. ~9!

SinceP(X) is an even function ofX, we have

d2P

dX2
2

2n

X

dP

dX
2c2P50, ~10!

where n5z2 /(d2z2) and c5A2d/(d2z2). ReplacingX
and P(X) by z5cX and P5(c21z)n11/2F(z), we can turn
Eq. ~10! into the Bessel modified equationd2F/dz2

1(1/z)dF/dz2@11(n11/2)2/z2#F50. Noting that
limx→6`P(X)50, we haveP(X)5AuXun11/2Kn11/2(cuXu)
whereKn11/2(cuXu) is a modified Bessel function of the se
ond kind of ordern11/2 andA is a constant. Determining
the constantA from the condition*2`

1`P(X)51, the solution
for Eq. ~10! is

P~X!5
cn13/2

2n11/2G~n11!GS 1

2D Kn1
1
2
~cuXu!

5
c2n12

p
uXu2n11E

0

` cos~ t !

~ t21c2X2!n11
dt

5
c

pE0

` cos~cuXut !

~11t2!n11
dt. ~11!

From the analytical solution~11!, we can obtain the follow-
ing results.

~1! For z2→0 or d→`, we haven→0. Thus, the statis-
tical distribution ofX tends to the exponential distribution
-
FIG. 1. Plot of the probability density func
tion P(X) as a function of X5u/A^u2& for
n-independent scalingz2n5z2. ~a! d52 for dif-
ferentz250.0 ~the exponential distribution!, 0.5,
1.0, 1.5, 2.0~the Gaussian distribution! ~from top
to bottom!, and ~b! d53 for different z250.0
~the exponential distribution!, 0.5, 1.0, 1.5, 2.0,
and the Gaussion distribution~dashed line! ~from
top to bottom!.
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FIG. 2. Plot of the probability density func
tion P(X) as a function ofX5u/A^u2& for regu-
lar scalingz2n5nz2 in d52 for ~a! z250.0 ~the
Gaussian distribution!, 0.5, 1.0, 4/3~the uniform
distribution in @2A3,A3#) ~from top to bottom!
and ~b! z251.5,1.8,2.0~from bottom to top!.
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lim
z2→0,d→`

P~X!5
1

A2
e2A2X.

~2! In d52, the functionsg(n) tend to 1 whenz2→2. In
this case, the statistical distribution ofX will tend to the
Gaussian distribution

lim
z2→2

P~X,d52!5
1

A2p
e2X2/2.

Figures 1~a! and 1~b! show the probability density func
tion P(X) in d52 andd53 for differentz2.

For regular scalingz2n5nz2, the relationg(n)5nz2 /d
1(12z2 /d) gives

E Fz2

d
n1S 12

z2

d D GX2nP~X!dX

5E ~2n21!X2n22P~X!dX. ~12!

This implies

S 12
z2

2d
X2D dP

dX
5S 3z2

2d
21DXP. ~13!

Since P(X) is a non-negative function with the conditio
*2`

1`P(X)51, P(X) is concentrated in a finite interva
@2A2d/z2,A2d/z2#:

P~X!5BS 12
z2

2d
X2D d/z223/2

, ~14!

whereB5@A2d/z2G(1/2)G(d/z221/2)/G(d/z2)#21. So we
have the following results.

~1! For z2→0 or d→`, g(n)→1. The statistical distri-
bution of X tends to a Gaussian distribution.

~2! In d52, whenz254/3, the random variableX has a
uniform distribution in@2A3,A3#. It is interesting that the
probability density functionP(X) is a convex function for
z2,4/3 and a concave function forz2.4/3 @see Figs. 2~a!
and 2~b!#. This appears to be a phase transition and the c
cal point isz254/3. In d53, the situation is different. The
probability density functionP(X) is a convex function for all
0,z2,2 and tends to a constant on its support@2A3,A3#
whenz2→2 @see Fig. 3#.
04730
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It is surprising that similar distribution to~14! has been
found in the investigation of the RSH of a turbulent veloc
field @11# and for the statistical quasistationary PDF of t
passive scalarX5(T2^T&)/Š(T2^T&)2

‹

1/2 in turbulence
@18#.

For the scaling of the Kraichnan conjecturez2n

5 1
2 @A4ndz21(d2z2)22(d2z2)#, we can calculate the

moments ^X2n& for all positive integersn from g(n)
51.0/(1.02z2 /d1z2n /nd). The characteristic functionf (t)
of the probability density functionP(X) is

f ~ t !511 (
n51

`
~21!n^X2n&

~2n!!
t2n.

Noting that f (t) is an even function oft, we have

P~X!5
1

2pE2`

1`

f ~ t !e2 ixtdt5
1

pE0

1`

f ~ t !cos~xt!dt.

Using the technique for numerical integration of an oscill
ing function @19#, we obtain the numerical results for th
probability density functionP(X) in d52 and d53 @see
Figs. 4~a! and 4~b!#. Based upon the numerical calculation
we have the following results.

~1! For z2→0 or d→`, the statistical distribution ofX
tends to the Gaussian distribution.

FIG. 3. Plot of the probability density functionP(X) as a func-
tion of X5u/A^u2& for regular scalingz2n5nz2 in d53 for differ-
ent z250.0,0.5,1.0,1.5,1.8,2.0~from top to bottom! wherez250.0
and 2.0 correspond to the Gaussian distribution and the unif
distribution in @2A3,A3#, respectively.
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FIG. 4. Plot of the probability density func
tion P(X) as a function ofX5u/A^u2& for the
Kraichnan conjecture for differentz250.0 ~the
Gaussian distribution!, 1.0, 4/3, 1.8, 2.0~from top
to bottom! in ~a! d52 and~b! d53.
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~2! It is interesting that the probability density functio
P(X) has a saddle shape with two peaks ind52 whenz2

.1.33. Ind53, it has only one peak atX50 for all 0,z2

,2 and changes very slowly with the value ofX in the
neighborhood ofX50 whenz2→2.

Therefore, we suggest that the statistical distribution oX
for the scaling of the Kraichnan conjecture has some sim
properties to the regular scalingz2n5nz2 in the neighbor-
hood of X50 and also some similar properties
,

s.

a,

04730
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n-independent scalingz2n5z2, e.g.,P(X) seems to be con
centrated in an infinite interval (2`,`).

I am grateful to Professor Emily S. C. Ching for h
stimulating discussions. I also acknowledge financial supp
from the Chinese University of Hong Kong, the Nation
Natural Science Foundation of China~Grant No. 10002019!,
the USTC Fund for Young Scholars~Grant No. KB1323!,
and the Research Foundation of State Key Laboratory of
Science of USTC.
E

-

@1# R. H. Kraichnan, Phys. Fluids11, 945 ~1968!.
@2# R. H. Kraichnan, Phys. Rev. Lett.72, 1016~1994!.
@3# R. H. Kraichnan, V. Yakhot, and S. Chen, Phys. Rev. Lett.75,

240 ~1995!.
@4# M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev

Phys. Rev. E52, 4294~1995!.
@5# K. Gawedzki and A. Kupiainen, Phys. Rev. Lett.75, 3834

~1995!.
@6# M. Chertkov and G. Falkovich, Phys. Rev. Lett.76, 2706

~1996!.
@7# A. L. Fairhall, O. Gat, V. S. L’vov, and I. Procaccia, Phy

Rev. E53, 3518~1996!.
@8# Emily S. C. Ching, V. S. L’vov, E. Podivilov, and I. Procacci

Phys. Rev. E54, 6364~1996!.
@9# S. Chen and R. H. Kraichnan, Phys. Fluids10, 2867~1998!.

@10# A. N. Kolmogrov, J. Fluid Mech.13, 82 ~1962!.
@11# G. Stolovizky and K. R. Sreenivasan, Rev. Mod. Phys.66, 229
~1994!.

@12# Emily S. C. Ching, Phys. Rev. Lett.79, 3644~1997!.
@13# V. S. L’vov and I. Procaccia, Phys. Rev. Lett.77, 3541~1996!.
@14# V. S. L’vov and I. Procaccia, Phys. Rev. E54, 6268~1996!.
@15# Emily S. C. Ching, V. S. L’vov, and I. Procaccia, Phys. Rev.

54, R4520~1996!.
@16# W. Feller, An Introduction to Probability Theory and Its Ap

plications, 2nd ed.~Wiley, New York, 1971!.
@17# Y. G. Sinai and V. Yakhot, Phys. Rev. Lett.63, 1962~1989!.
@18# L. Valiño, C. Dopazo, and J. Ros, Phys. Rev. Lett.72, 3518

~1994!.
@19# V. I. Krylov and N. S. Skoblya,Handbook of Numerical In-

vestigation of Laplace Transform~Israel Program for Scientific
Translations, Jerusalem, 1969!.
2-4


